Various Tesla book cover images

Nikola Tesla Books

Books written by or about Nikola Tesla

to the primary vibration when the capacity in the primary or exciting circuit was 1 2/3 tanks or 60 bottles on each side, or 30 bottles total, that is, 30 x 0.0009 = 0.027 mfd, total.

The vibrations were impressed on the ground plate by the oscillator with normal connection, that is, two primary cables in multiple or one primary turn, the approximate inductance of which was 56,400 cm or, say, 56,000 cm, which is close enough for the present consideration. This inductance may have been modified by the secondary, but the effect of the latter must have been very slight as, with the capacity used, it was “out of tune” and the current through it was necessarily very small. Taking then the inductance of the primary exciting circuit at 56,000 cm, the period of this circuit was

Tp = $! {{2 \pi \over 10^{3}} \sqrt{0.027 \times {56 \over 10^{6}}}} $!.

Now calling Cs the “ideal” capacity of the excited circuit, the period of the same was

Ts = $! {{2 \pi \over 10^{3}} \sqrt{{185 \over 10^{4}} \times C_{s}}} $! and equating we have Cs = $! {{10^{4} \over 185} \times 0.027 \times {56 \over 10^{6}}} $! = $! {{56 \times 0.027} \over {185 \times 10^{2}}} $! mfd,

or Cs = $! {{9 \times 10^{5} \times 56 \times 0.027} \over {185 \times 10^{2}}} $! = $! {{243 \times 56} \over 185} $! = 75.2 cm, approx. From above

Tp = $! {{2 \pi 10^{3}} \sqrt{0.027 \times {56 \over 10^{6}}}} $! = $! {{2 \pi \over 10^{3}} \sqrt{1.512}} $! = $! {{6.28 \over 10^{6}} \times 1.23} $! = $! {7.7244 \over 10^{6}} $!

and n = 129,500 per second nearly.

The theoretical wave length would thus be λ = $! {186,000 \over 130,000} $! = $! {186 \over 130} $! = 1.43 miles approx.

or $! {λ \over 4} $! = $! {1.43 \over 4} $! = 0.3575 miles or 0.3575 x 5280 = 1888 feet = $! {λ \over 4} $!.

The actual length of wire in the experiment was: 274 turns of the coil, each 79.29" = 1810 feet + one piece of wire 304 feet + one piece of wire 84 feet = 1810 + 304 + 84 = 2198 feet or nearly 15% more than the theoretical value. The fact is, the adjustment for resonance was not quite close as the lamp lighted could not withstand the current by closer adjustment. Two of these lamps were broken. The energy transmitted through the ground to the coil was, of course, small in this instance, since only a small part of the available primary capacity was used, that is, $! {1.66 \over 8} $! of the available capacity and the current of the supply transformers was reduced as far as practicable. If a coil especially adapted for the full output of the oscillator would have been used it would have been practicable to transmit many times the amount of energy needed for lighting the lamp. The lamps used in this experiment were special ones each taking, under the conditions of the experiment, perhaps 10 watts or nearly so. Assuming again a circuit under ideal conditions with the capacity of 75.2 cm on the free end of a coil without distributed capacity, and calling the potential to which this capacity would be charged P, the total energy set

23*

355

23

Hertz, H.R. UNTERSUCHUNGEN UBER DIE AUSBREITUNG DER ELEKTRISCHEN KRAFT, dritte auflage, Leipzig, 1914, Johann Ambrosius Barth.

The explanation to Photograph XXII concerning the transmission of power from the excited primary circuit to the “extra coil” via the earth is similar to that he gave in 1893(6). The experiment to which the photograph refers was made with the aim of estimating the power of the oscillator from the thermal effect of the HF current. What Tesla calls the “total energy set in movement” would correspond to the total energy transferred to condenser in the secondary (i.e. the power) if an energy of $!{1 \over 2}$! CV2 is transferred in each half-cycle. It can be shown that the active power dissipated in the circuit is much less than this and is inversely proportional to the Q-factor of the oscillating circuit.


January 2

Tesla gave his observations on 22 pages. On them he described eleven photographs. The explanation along with photograph No. 22 about energy transmission from excitation of the primary circuit to "additional coil" over the earth surface is similar to the one from 1893(6). Otherwise the experiment to which the photograph is related was performed for the purpose of oscillator power estimate on the basis of thermal effects of high frequency current.

That which Tesla calls "total energy placed in motion" would correspond to the total energy which is supplied to a capacitor per second (i.e. power) if energy ½CV2 is supplied during the duration of one half of the period. 

It could be shown that the active power which is spent in the circuit is considerably smaller than this power, and opposite, proportionally to the quality factor of the oscillating circuit. On several following photographs, the movable resonant coil with connected bulbs is photographed which is supplied by transmitted high frequency energy. One terminal of this coil is connected to the ground, and the other is open ended or a short piece of wire is connected to it. Bulbs are coupled by means of the auxiliary secondary coil inductively with the secondary coil. The data was not given on the distance of resonant coil from the oscillator coil. Tesla's comment on photograph No. 27 illustrates the interest on the question of electrical lightning, though he worked on this for more than ten years. One earlier discovery on gas elimination and not only filament, when working with high frequency currents is again proven(5).

On photograph No. 28 the bulb is connected in series with a terminal capacitance load. In the calculations "total energy placed in movement" is not taken when it was assumed that the electrostatic energy ½CV2 is spent in the bulb during one half of the period. A similar comment is valid for photograph No. 29.

Tesla mentioned several times that the main transmission from the exciting to the excited circuit is done via the ground. The proof for this statement he found in the experiment illustrated by photograph No. 30. He concluded that the induced voltage in the excited circuit is significantly reduced when the ground connection is disconnected. Photograph No. 31 is an X-ray photograph of a finger. The comments on this experiment are an illustration of Tesla's interest in the radiation field which was mentioned earlier (please see comment on June 6, 1899).

Glossary

Lowercase tau - an irrational constant defined as the ratio of the circumference of a circle to its radius, equal to the radian measure of a full turn; approximately 6.283185307 (equal to 2π, or twice the value of π).
A natural rubber material obtained from Palaquium trees, native to South-east Asia. Gutta-percha made possible practical submarine telegraph cables because it was both waterproof and resistant to seawater as well as being thermoplastic. Gutta-percha's use as an electrical insulator was first suggested by Michael Faraday.
The Habirshaw Electric Cable Company, founded in 1886 by William M. Habirshaw in New York City, New York.
The Brown & Sharpe (B & S) Gauge, also known as the American Wire Gauge (AWG), is the American standard for making/ordering metal sheet and wire sizes.
A traditional general-purpose dry cell battery. Invented by the French engineer Georges Leclanché in 1866.
Refers to Manitou Springs, a small town just six miles west of Colorado Springs, and during Tesla's time there, producer of world-renown bottled water from its natural springs.
A French mineral water bottler.
Lowercase delta letter - used to denote: A change in the value of a variable in calculus. A functional derivative in functional calculus. An auxiliary function in calculus, used to rigorously define the limit or continuity of a given function.
America's oldest existing independent manufacturer of wire and cable, founded in 1878.
Lowercase lambda letter which, in physics and engineering, normally represents wavelength.
The lowercase omega letter, which represents angular velocity in physics.